I work with C# on Unity3d (a platform to develop videogames) and here I learned to use Events, which you implement with the famous Observer Design Pattern (you can learn more about the pattern in this great video from Derek Banas: Observer Design Pattern). Events are a great way of telling multiple objects (listeners) that a certain event of their interest has occurred without having to search for them; its computationally efficient and really dynamic.
Being Python a dynamic language I thought there would be an Event System in the standard library, but there isn't. There are packages like PyDispatcher and PyNotify but not wanting install/test them, I decided to implement my own event manager system in a very Pythonic style.
So I created the
EventManager
class (code at the end), and the syntax is the following:#Create an event with no listeners assigned to it
EventManager.addEvent( eventName = [] )
#Create an event with listeners assigned to it
EventManager.addEvent( eventName = [fun1, fun2,...] )
#Create any number event with listeners assigned to them
EventManager.addEvent( eventName1 = [e1fun1, e1fun2,...], eventName2 = [e2fun1, e2fun2,...], ... )
#Add or remove listener to an existing event
EventManager.eventName += extra_fun
EventManager.eventName -= removed_fun
#Delete an event
del EventManager.eventName
#Fire the event
EventManager.eventName()
Here is an Example:
def hello(name):
print "Hello {}".format(name)
def greetings(name):
print "Greetings {}".format(name)
EventManager.addEvent( salute = [greetings] )
EventManager.salute += hello
print "\nInitial salute"
EventManager.salute('Oscar')
print "\nNow remove greetings"
EventManager.salute -= greetings
EventManager.salute('Oscar')
Output:
Initial salute
Greetings Oscar
Hello OscarNow remove greetings
Hello Oscar
EventManger Code:
class EventManager:
class Event:
def __init__(self,functions):
if type(functions) is not list:
raise ValueError("functions parameter has to be a list")
self.functions = functions
def __iadd__(self,func):
self.functions.append(func)
return self
def __isub__(self,func):
self.functions.remove(func)
return self
def __call__(self,*args,**kvargs):
for func in self.functions : func(*args,**kvargs)
@classmethod
def addEvent(cls,**kvargs):
"""
addEvent( event1 = [f1,f2,...], event2 = [g1,g2,...], ... )
creates events using **kvargs to create any number of events. Each event recieves a list of functions,
where every function in the list recieves the same parameters.
Example:
def hello(): print "Hello ",
def world(): print "World"
EventManager.addEvent( salute = [hello] )
EventManager.salute += world
EventManager.salute()
Output:
Hello World
"""
for key in kvargs.keys():
if type(kvargs[key]) is not list:
raise ValueError("value has to be a list")
else:
kvargs[key] = cls.Event(kvargs[key])
cls.__dict__.update(kvargs)
No hay comentarios:
Publicar un comentario